HOW FAINT CAN WE GO?

mag 14 ... 15 ... 16 ... 17 ?? ... 18 ??

Exploring the magnitude limits of amateur spectroscopy using a modified ALPY spectrograph at Three Hills Observatory
HOW FAINT CAN WE GO?
Modifying the ALPY Spectrograph for fainter objects
Robin Leadbeater

THREE HILLS OBSERVATORY UK

Celestron C11 on EQ6 mount
(EQMod, ASCOM, Cartes du Ciel)

Spectrographs:-

LHIRES III (150, 600, 1200, 2400)
Star Analyser (100, 200)
ALPY 600

Remotely operated via wireless network
(Windows Remote Desktop)
ALPY SPECTROGRAPH

Focal Reducer
f6

Guide Camera
ATIK 16 IC-S
(cooled ICX415AL)

Science Camera
ATIK 314L+
(cooled ICX285AL)

Calibration Module
Tungsten & Ne/Ar/H lamps

USB remote control for calibration module

Guiding Module
23um mirror slit

Core Module
Collimator
Grism
Camera lens
MODIFYING THE ALPY SPECTROGRAPH
(ALPY 200)

Removing the Grism from the ALPY Core Module

Taking care that the collimator lens does not fall out!

Standard 600 l/mm Grism

Modified 200 l/mm Grism
(Made using the Star Analyser 200 master grating)
The dispersion and resolution of the ALPY200 are ~4 lower compared with the ALPY 600.

R = 130 at 6000 Å is sufficient for supernova identification for example.

The efficiency of the 200 l/mm grism is ~2x that of the 600 l/mm grism.

Combining this with the 4x reduction in dispersion results in an 8x brighter spectrum.
ADVANTAGES OF THE ALPY 200

Compared with the Star Analyser

The slit reduces the sky background level by a factor of ~100, reducing sky noise and eliminating interference from field stars and their spectra.

The mirror slit guider allows longer individual exposures, reducing the total camera read noise contribution.

The fully collimated optics produce a sharp spectrum over the full wavelength range, allowing a lower dispersion to be used for the same resolution.

Compared with the ALPY 600

The higher efficiency of the 200 l/mm grism increases the flux in the spectrum.

The reduced dispersion minimises the camera thermal noise contribution compared with increasing the effective pixel size by in camera binning.
FIRST RESULTS -
QSO 3C273 (mag 12.5) 20 deg from full moon

Raw spectrum with H beta emission line visible against the bright lunar spectrum and Na D from street lights

Reduced spectrum showing red shifted Balmer lines (z = 0.17)

Comparison with professional spectrum
QSO APM 08279 +5255 (mag 15.5 and 12Glyr)

The key features in the spectrum are clear even in a single 600s exposure. The features at ~6000A and ~7500A are red shifted from the UV (z=3.91, 12 Glyr). The absorption at~5000A is from a gravitationally lensing object in the line of sight at z=3.07

Comparison with professional spectrum

Light pollution spectrum at THO compared with VLT Paranal

Note the natural airglow molecular bands in IR from OH
SN 2014AS in NCG 5410 (type 1c mag 16.5)
Discovered by amateur Dave Grennan 2014-04-18

Guide camera image.
The sn was not visible during guiding so a mag 13 field star was used.

Spectrum image before and after sky subtraction.
Spectra of the supernova and galaxy core above it. Note the clear Halpha emission from the galaxy core and OH air glow bands in the IR.

Reduced spectra for galaxy and supernova.
Exposure 110 min SNR ~30

The sn spectrum does not show strong Halpha emission or Si 6150 absorption features (not type II or 1a)

The measured red shift of NGC5410 (Halpha) = 0.0124
(published figure = 0.0129)

GELATO supernova identification program suggests a best fit to type 1b/c